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Abstract
Mood disorders (depression, bipolar disorders) are prevalent and disabling. They are also highly co-morbid with other psychiatric disorders.
Currently there are no objective measures, such as blood tests, used in clinical practice, and available treatments do not work in everybody.
The development of blood tests, as well as matching of patients with existing and new treatments, in a precise, personalized and preventive
fashion, would make a significant difference at an individual and societal level. Early pilot studies by us to discover blood biomarkers for
mood state were promising [1], and validated by others [2]. Recent work by us has identified blood gene expression biomarkers that track
suicidality, a tragic behavioral outcome of mood disorders, using powerful longitudinal within-subject designs, validated them in suicide
completers, and tested them in independent cohorts for ability to assess state (suicidal ideation), and ability to predict trait (future
hospitalizations for suicidality) [3–6]. These studies showed good reproducibility with subsequent independent genetic studies [7]. More
recently, we have conducted such studies also for pain [8], for stress disorders [9], and for memory/Alzheimer’s Disease [10]. We endeavored
to use a similar comprehensive approach to identify more definitive biomarkers for mood disorders, that are transdiagnostic, by studying
mood in psychiatric disorders patients. First, we used a longitudinal within-subject design and whole-genome gene expression approach to
discover biomarkers which track mood state in subjects who had diametric changes in mood state from low to high, from visit to visit, as
measured by a simple visual analog scale that we had previously developed (SMS-7). Second, we prioritized these biomarkers using a
convergent functional genomics (CFG) approach encompassing in a comprehensive fashion prior published evidence in the field. Third, we
validated the biomarkers in an independent cohort of subjects with clinically severe depression (as measured by Hamilton Depression Scale,
(HAMD)) and with clinically severe mania (as measured by the Young Mania Rating Scale (YMRS)). Adding the scores from the first three
steps into an overall convergent functional evidence (CFE) score, we ended up with 26 top candidate blood gene expression biomarkers that
had a CFE score as good as or better than SLC6A4, an empirical finding which we used as a de facto positive control and cutoff. Notably,
there was among them an enrichment in genes involved in circadian mechanisms. We further analyzed the biological pathways and networks
for the top candidate biomarkers, showing that circadian, neurotrophic, and cell differentiation functions are involved, along with
serotonergic and glutamatergic signaling, supporting a view of mood as reflecting energy, activity and growth. Fourth, we tested in
independent cohorts of psychiatric patients the ability of each of these 26 top candidate biomarkers to assess state (mood (SMS-7), depression
(HAMD), mania (YMRS)), and to predict clinical course (future hospitalizations for depression, future hospitalizations for mania). We
conducted our analyses across all patients, as well as personalized by gender and diagnosis, showing increased accuracy with the
personalized approach, particularly in women. Again, using SLC6A4 as the cutoff, twelve top biomarkers had the strongest overall evidence
for tracking and predicting depression after all four steps: NRG1, DOCK10, GLS, PRPS1, TMEM161B, GLO1, FANCF, HNRNPDL,
CD47, OLFM1, SMAD7, and SLC6A4. Of them, six had the strongest overall evidence for tracking and predicting both depression and
mania, hence bipolar mood disorders. There were also two biomarkers (RLP3 and SLC6A4) with the strongest overall evidence for mania.
These panels of biomarkers have practical implications for distinguishing between depression and bipolar disorder. Next, we evaluated the
evidence for our top biomarkers being targets of existing psychiatric drugs, which permits matching patients to medications in a targeted
fashion, and the measuring of response to treatment. We also used the biomarker signatures to bioinformatically identify new/repurposed
candidate drugs. Top drugs of interest as potential new antidepressants were pindolol, ciprofibrate, pioglitazone and adiphenine, as well as the
natural compounds asiaticoside and chlorogenic acid. The last 3 had also been identified by our previous suicidality studies. Finally, we
provide an example of how a report to doctors would look for a patient with depression, based on the panel of top biomarkers (12 for
depression and bipolar, one for mania), with an objective depression score, risk for future depression, and risk for bipolar switching, as well
as personalized lists of targeted prioritized existing psychiatric medications and new potential medications. Overall, our studies provide
objective assessments, targeted therapeutics, and monitoring of response to treatment, that enable precision medicine for mood disorders.
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Introduction

“How weary, stale, flat, and unprofitable
Seem to me all the uses of this world!”

– W. Shakeaspeare, Hamlet

“There are good and bad times, but our mood changes
more often than our fortune.”

– Thomas Carlyle

Mood disorders affect up to 1 in 4 individuals in their
lifetime. Depression in particular is the leading cause of
disability for ages 15–44, a prime productive and repro-
ductive age. Due to the lack of objective tests and the
perceived presence of stigma, mood disorders are often
underdiagnosed or misdiagnosed (depression instead of
bipolar disorder). They are also sub-optimally treated, can
lead to self-medication with alcohol and drugs, and may
culminate in some cases with suicide.

Blood biomarkers are emerging as important tools in
disorders where subjective self-report of an individual or
clinical impression of a healthcare professional are not
always reliable, and for predicting future risk before the
disorder (re-)occurs. They also open the door to precise,
personalized matching with medications, and objective
monitoring of response to treatment. Pioneering early work
by our group has identified candidate blood gene expression
biomarkers for mood state using a case–case design and a
visual analog scale (VAS) (Le-Niculescu et al.) [1]. Those
biomarkers were also validated independently as tracking
response to cognitive-behavioral therapy by another group
[2]. Recent work by our group has identified blood gene
expression biomarkers that track suicidality, a tragic out-
come of mood disorders, using a new powerful within-
subject longitudinal stepwise approach [4, 5, 11]. These
studies show good reproducibility and provide a Rosetta
Stone for recent multiple genetic studies of suicide (GWAS,
family based) [7]. More recently, we have conducted such
studies for pain [8], for stress disorders [9], and for memory/
Alzheimer’s Disease [10].

We endeavored to use a similar comprehensive approach
to identify more definitive biomarkers for mood disorders in
general, and depression in particular. Psychiatric patients
may have an increased vulnerability to mood disorders,
regardless of their primary diagnosis, as well as increased
reasons for mood disorders, due to their often-adverse life
trajectory. As such, they may be a particularly suitable
population in which to try to identify blood biomarkers for
mood disorders, that are generalizable and transdiagnostic.
First, we used a powerful longitudinal within-subject design
(Fig. 1 and Table 1) in individuals with psychiatric dis-
orders to discover blood gene expression changes between
self-reported low mood and high mood states, measured by

a VAS, called the Simplified Affective State Scale (SASS),
previously described by us [4, 5, 11, 12], which has a
subscale of seven items related to mood (SMS-7) (Fig. S1).
Second, we prioritized this list of candidate biomarkers with
a Bayesian-like CFG approach, comprehensively integrat-
ing previous human and animal model evidence in the field.
Third, we validated our top candidate biomarkers for mood
from discovery and prioritization in an independent cohort
of psychiatric subjects with clinically severe depression (as
measured by HAMD) or with clinically severe mania (as
measured by YMRS). We also analyzed the biological
pathways and networks they are involved in (Table 2).
Fourth, we tested if the top candidate biomarkers from the
first three steps are able to predict low mood state, clinical
depression state, and future hospitalizations with depres-
sion, in another independent cohort of psychiatric subjects.
We tested the biomarkers in all subjects in the test cohort, as
well as in a more personalized fashion by gender and psy-
chiatric diagnosis (Fig. 2A–D). We also conducted similar
analyses for predictions of high mood, clinical mania state,
and future hospitalizations with mania (Table 3B, C, and
Supplementary Information—Pathways, Predictions and
Reproducibility). Next, we identified which of our bio-
markers are targets of existing drugs and thus can be used
for pharmacogenomic population stratification and mea-
suring of response to treatment for depression. We also used
the biomarker gene expression signatures to interrogate the
Connectivity Map database from Broad/MIT, and the NIH
LINCS database, in order to identify drugs and natural
compounds that can be repurposed for treating and
preventing depression, including bipolar depression.
Finally, we provide an example of how a personalized
patient report can be generated for clinicians to use,
reflecting the objective assessment of depression state,
future risk of severe depression, risk of bipolarity, matching
with existing psychiatric medications, matching with
non-psychiatric/repurposed medications, and monitoring
response to treatment.

Materials and methods

Cohorts

We used three independent cohorts: (1) discovery (a long-
itudinal psychiatric subjects cohort with diametric changes
in mood state from at least two consecutive testing visits);
(2) validation (an independent psychiatric subjects cohort
with clinically severe depression or mania); and (3) testing
(an independent psychiatric subjects test cohort for pre-
dicting mood state, clinical depression or mania, and for
predicting future hospitalizations for depression or mania)
(Fig. 1A and Table 1).

H. Le-Niculescu et al.



Fig. 1 Steps 1–3: Discovery, Prioritization and Validation of Bio-
markers for Mood. A Cohorts used in study, depicting flow of dis-
covery, prioritization, and validation of biomarkers from each step.
B Discovery cohort longitudinal within-subject analysis. Phchp### is
study ID for each subject. V# denotes visit number. C Differential gene
expression in the Discovery cohort- number of genes identified with dif-
ferential expression (DE) and absent–present (AP) methods with an
internal score of 2 and above. Red increased in expression in high mood,
blue decreased in expression in high mood. At the discovery step probesets
are identified based on their score for tracking mood with a maximum of
internal points of 6 (33% (2pt), 50% (4pt) and 80% (6pt)). D Prioritization
with CFG for prior evidence of involvement in mood disorders. In the
prioritization step probesets are converted to their associated genes using
Affymetrix annotation and GeneCards. Genes are prioritized and scored
using CFG for mood evidence with a maximum of 12 points. Genes
scoring at least 6 points out of a maximum possible of 18 total discovery

and prioritization points are carried to the validation step. E Validation in
two independent cohort of psychiatric patients with clinically severe
depression (HAMD ≥ 22) and clinically severe mania (YMRS ≥ 20). In the
validation step biomarkers are assessed for stepwise change from the
validation group with mania, to the discovery groups of subjects with high
mood, low mood, to the validation group with depression, using ANOVA.
N number of testing visits. Two hundred ninety-one biomarkers were
nominally significant, and 1446 biomarkers were stepwise changed.
PRPS1 and SLC6A4 are examples of significantly increased, respectively,
decreased, biomarkers in validation. There were 26 markers that had an
overall Convergent Functional Evidence (CFE) score from Steps 1–3 that
was at least as good as SLC6A4, which serves as a de facto positive
control and that we decided to use as a cutoff. The markers in red are
increased in high mood, the markers in blue are decreased in high mood/
increased in depression (color figure online).
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Table 1 Demographics of cohorts used.

Number of
subjects

Gender Diagnosis Ethnicity Age
Mean
(SD)

T-test for age

Discovery

Discovery cohort
-within-subject changes in mood
(SMS-7)

44
(with 134 visits)

Male= 30
Female= 14

BP= 14
MDD= 8
SZA= 5
SZ= 6
PTSD= 8
MOOD= 2

EA= 33
AA= 9
Asian= 1
Hispanic=1

All= 50.76 (6.48)

Validation

Independent validation cohort
-clinically severe depression
(HAMD ≥ 22)

30 Male= 23
Female= 7

BP= 12
MDD= 12
SZA= 2
PTSD= 3
PSYCH= 1

EA= 27
AA= 2
Asian= 1

All= 49.42
(7.06)

Independent validation cohort
-clinically severe mania
(YMRS ≥ 20)

17 Male= 16
Female= 1

BP= 8
SZA= 6
SZ= 2
PSYCH= 1

EA= 11
AA= 6

All= 48.25
(8.21)

Testing

Independent testing cohort
State predictions
Low Mood
(SMS-7 ≤ 40)

190 Male= 153
Female= 37

BP= 52
MDD= 30
SZA= 48
SZ= 36
PTSD= 16
MOOD= 5
PSYCH= 3

EA= 118
AA= 69
Hispanic= 2
Mixed= 1

All= 50.52
(8.58)
Low mood= 49 (n= 87)
Others= 50.88 (n= 359

T-test for age between low mood vs.
Others 0.10469

Independent testing cohort
State predictions
Clinical Depression(HAMD ≥ 22)

226 Male= 181
Female= 45

BP= 74
MDD= 39
SZA= 48
SZ= 36
PTSD= 21
MOOD= 5
PSYCH= 3

EA= 156
AA= 66
Asian= 1
Hispanic= 2
Mixed= 1

All= 46.71
(9.42)
Clinical depression= 44.4 (n= 40)
Others= 46.9 (n= 445)

T-test for age between clinical
depression vs. others 0.177087984

Independent testing cohort
Trait predictions
Hospitalizations with Depression
First year following initial visit

147 Male= 130
Female= 17

BP= 37
MDD= 27
SZA= 32
SZ= 33
PTSD= 13
MOOD= 3
PSYCH= 2

EA= 90
AA= 54
Mixed= 1
Hispanic= 2

All= 47.13
(9.38)
Hosp with Depression= 46.58 (n= 50)
Others= 47.23 (n= 282)

T-test for age between hosp with
depression vs. others
0.701909278

Independent testing cohort
Trait predictions
Hospitalizations with Depression
All future years following initial visit

170 Male= 150
Female= 20

BP= 41
MDD= 29
SZA= 40
SZ= 39
PTSD= 14
MOOD= 5
PSYCH= 2

EA= 102
AA= 65
Mixed= 1
Hispanic= 2

All= 49.4
(9.78)
Hosp with depression= 49.3 (n= 127)
Others= 49.4 (n = 282)

T-test for age between
hosp with depression vs. others
0.93467396

Independent testing cohort
State predictions High Mood
(SMS-7 ≥ 60)

190 Male= 153
Female= 37

BP= 52
MDD= 30
SZA= 48
SZ= 36
PTSD= 16
MOOD= 5
PSYCH= 3

EA= 118
AA= 69
Hispanic= 2
Mixed= 1

All= 50.52
(8.58)
High mood= 50.6 (n = 185)
Others= 50.5 (n= 261)

T-test for age between high mood
vs. others
0.877948

Independent testing cohort
State predictions
Clinical Mania
(YMRS ≥ 20)

97 Male= 73
Female= 24

BP= 37
MDD= 13
SZA= 18
SZ= 18
PTSD= 10
MOOD= 1

EA= 72
AA= 22
Hispanic= 2
Mixed= 1

All= 39.4
(8.83)
Clinical Mania=38.9 (n= 13)
= 38.9 (n= 13)
Others=39.4(n = 197)

T-test for age between mania
vs. others
0.883113775

Independent testing cohort
Trait predictions
Hospitalizations with Mania
First year following initial visit

147 Male= 130
Female= 17

BP= 37
MDD= 27
SZA= 32
SZ= 33
PTSD= 13
MOOD= 3
PSYCH= 2

EA= 90
AA= 54
Mixed= 1
Hispanic= 2

All= 47.13
(9.38)
Hosp with Mania
= 45.5 (n= 11)
Other==47.2 (n= 321)s
= 47.2 (n= 321)

T-test for age between hosp
with mania
vs. others
0.588179

Independent testing cohort
Trait predictions
Hospitalizations with Mania
All future years following initial visit

117 Male= 102
Female= 15

BP= 34
MDD= 17
SZA= 26
SZ= 26
PTSD= 11
MOOD= 2
PSYCH= 1

EA= 74
AA= 40
Mixed= 1
Hispanic= 2

All=44.39
(9.01)
Hosp with Mania
= 43.7(n= 37)
Others
= 44.5 (n= 220)

T-test for age between hosp with
mania vs. others
0.692290398

BP bipolar, MDD major depressive disorder, SZA schizoaffective disorder, SZ schizophrenia, PTSD post-traumatic stress disorder, MOOD mood
disorder nos, PSYCH psychosis nos.
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Ta
bl
e
2
B
io
lo
gy

of
m
oo

d
bi
om

ar
ke
rs
.
A

P
at
hw

ay
an
al
ys
es
.
B
D
is
ea
se
s.

A
.

D
A
V
ID

G
O

fu
nc
tio

na
l
an
no

ta
tio

n
bi
ol
og

ic
al

pr
oc
es
se
s

K
E
G
G

pa
th
w
ay
s

In
ge
nu

ity
pa
th
w
ay
s

#
T
er
m

C
ou

nt
%

P
va
lu
e

T
er
m

C
ou

nt
%

P
va
lu
e

T
op

ca
no

ni
ca
l
pa
th
w
ay
s

P
va
lu
e

O
ve
rl
ap

T
op

ca
nd

id
at
e

bi
om

ar
ke
rs

(n
=
26

pr
ob

es
et
s,

23
ge
ne
s)

1
R
eg
ul
at
io
n
of

ce
ll

di
ff
er
en
ti
at
io
n

9
39

.1
5.
20

E
−
04

N
eu
ro
tr
op

hi
n
si
gn

al
in
g

pa
th
w
ay

3
13

3.
10

E
−
02

Se
ro
to
ni
n
re
ce
pt
or

si
gn

al
in
g

8.
62

E
−
04

4.
7%

2/
43

2
R
hy

th
m
ic

pr
oc
es
s

5
21

.7
6.
80

E
−
04

G
lu
ta
m
at
e
re
ce
pt
or

si
gn

al
in
g

1.
51

E
−
03

3.
5%

2/
57

3
R
eg
ul
at
io
n
of

pe
pt
id
yl
-t
hr
eo
ni
ne

ph
os
ph

or
yl
at
io
n

3
13

1.
10

E
−
03

E
rb
B
2-
E
rb
B
3
S
ig
na
lin

g
1.
96

E
−
03

3.
1%

2/
65

4
M
es
en
ch
ym

al
ce
ll
de
ve
lo
pm

en
t

4
17

.4
1.
30

E
−
03

G
lu
ta
m
in
e
D
eg
ra
da
tio

n
I

2.
02

E
−
03

50
.0
%

1/
2

5
C
ir
ca
di
an

rh
yt
hm

4
17

.4
1.
40

E
−
03

C
el
l
C
yc
le
:
G
1/
S

C
he
ck
po

in
t
R
eg
ul
at
io
n

2.
08

E
−
03

3.
0%

2/
67

B
.

D
av
id

In
ge
nu

ity
pa
th
w
ay
s
di
se
as
e

#
T
er
m

C
ou

nt
%

P
va
lu
e

D
is
ea
se
s
an
d
di
so
rd
er
s

P
va
lu
e

#
M
ol
ec
ul
es

T
op

ca
nd

id
at
e
bi
om

ar
ke
rs

(n
=
26

pr
ob

es
et
s,
23

ge
ne
s)

1
W

ei
gh

t
ga

in
5

21
.7

2.
90

E
−
05

N
eu
ro
lo
gi
ca
l
di
se
as
e

2.
85

E
−
03

to
5.
36

E
−
09

18

2
M
aj
or

de
pr
es
si
ve

di
so
rd
er

4
17

.4
4.
00

E
−
05

P
sy
ch
ol
og

ic
al

di
so
rd
er
s

1.
41

E
−
03

to
1.
14

E
−
08

14

3
S
ch
iz
op

hr
en
ia

8
34

.8
5.
10

E
−
05

O
rg
an
is
m
al

in
ju
ry

an
d
ab
no

rm
al
iti
es

3.
03

E
−
03

to
1.
91

E
−
07

23

4
D
ep
re
ss
io
n

5
21

.7
5.
40

E
−
05

S
ke
le
ta
l
an
d
m
us
cu
la
r
di
so
rd
er
s

2.
70

E
−
03

to
1.
44

E
−
06

11

5
P
sy
ch
os
is

3
13

1.
60

E
−
04

M
et
ab
ol
ic

di
se
as
e

2.
02

E
−
03

to
1.
51

E
−
06

11

B
ol
d
hi
gh

lig
ht
s
to
p
re
su
lts

of
in
te
re
st
.

Precision medicine for mood disorders: objective assessment, risk prediction, pharmacogenomics, and. . .



Similar to our previous studies in suicide [3–5], the live
psychiatric subjects are part of a larger longitudinal cohort
of adults that we are continuously collecting. Subjects are
recruited primarily from the patient population at the
Indianapolis VA Medical Center. All subjects understood
and signed informed consent forms detailing the research
goals, procedure, caveats and safeguards, per IRB approved
protocol. Subjects completed diagnostic assessments by
structured clinical interviews. They had an initial testing
visit in the lab or on the inpatient psychiatric unit, followed

by up to six testing visits, 3–6 months apart or whenever a
new psychiatric hospitalization occurred. At each testing
visit, they received a series of psychiatric rating scales, and
their blood was drawn. The rating scales included the
Hamilton Rating Scale for Depression-17 (HAMD), the
Young Mania Rating Scale (YMRS), and a visual analog
scale for assessing mood state (SMS-7), which provides a
score that is the average of seven items (Fig. S1A), and is
part of the SASS (Niculescu et al. [12], Niculescu et al. [4],
Levey et al. [5], Niculescu et al. [6]). SMS-7 integrates on a

Fig. 2 Best single biomarkers predictors for depression, state and
trait. From top candidate biomarkers after Steps 1–3 (discovery,
prioritization, validation-bold) (n= 26). Bar graph shows best pre-
dictive biomarkers in each group. All markers are nominally sig-
nificant p < 0.05. Table underneath the figures displays the actual
number of biomarkers for each group whose ROC AUC p values
(A–C,) and Cox odds ratio (OR) p values (D) are at least nominally
significant. Some gender and diagnosis group are missing from the
graph as they did not have any significant biomarkers, or sufficient
timepoints in the case of longitudinal predictions. Cross-sectional is

based on levels at one visit. Longitudinal is based on levels at multiple
visits (integrates levels at most recent visit, maximum levels, slope into
most recent visit, and maximum slope). Dividing lines represent the
cutoffs for a test performing at chance levels (white), and at the same
level as the best biomarkers for all subjects in cross-sectional (gray)
and longitudinal (black) based predictions. All biomarkers perform
better than chance. Biomarkers performed better when personalized by
gender and diagnosis, particularly in females. * survived Bonferroni
correction for the number of candidate biomarkers tested (n= 26).

H. Le-Niculescu et al.
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continuum in a quantitative fashion clinical symptoms for
depression and mania, and provides a score for mood state
at a particular moment in time. This is a state measure,
related to how people feel in the present. It has good face
validity based on DSM criteria, and correlates inversely
with HAMD [12] (Fig. S1B). SASS, in addition to seven
items measuring mood (SMS-7), also has four items mea-
suring anxiety (SAS-4). We also used the PANSS Positive
scale, that measures positive psychotic symptoms. These
last two measures (SAS-4 and PANSS Positive) may define
subtypes of low mood, as shown in the Discovery cohort
(Fig. S1E).

We also created and used a checklist/measure of clinical
severity of bipolar disorder, based on past history, called
Convergent Functional Information for Bipolar Disorder
Severity (CFI-BP) scale, ranking patients with mood dis-
orders on a scale of 1–10. This is a trait measure, related to
how people behaved in their past (Fig. S2).

At each visit, we collected whole blood (5 ml) in two
RNA-stabilizing PAXgene tubes, labeled with an anon-
ymized study ID number, and stored at −80 °C in a locked
freezer until the time of future processing. Whole-blood
RNA was extracted for microarray gene expression studies
from the PAXgene tubes, as detailed below.

For this study, our within-subject discovery cohort, from
which the biomarker data were derived, consisted of
44 subjects (30 males, 14 females) with psychiatric dis-
orders and multiple testing visits, who each had at least one
diametric change in SMS-7 mood scores from low mood
(SMS-7 ≤ 40) to high mood (SMS-7 ≥ 60), or vice versa,
from one testing visit to another. There were 4 subjects with
6 visits each, 6 subjects with 4 visits each, 18 subjects with
3 visits each, and 16 subjects with 2 visits each resulting in
a total of 134 blood samples for subsequent gene expression
microarray studies (Fig. 1, Tables 1 and S1).

Our independent validation cohort, in which the top bio-
marker findings were validated for being even more changed
in expression, consisted of 39 male and 8 female subjects with
a clinically severe mood disorder (n= 30 depression as
measured by HAMD scores ≥22, and n= 17 mania as mea-
sured by YMRS scores ≥20), and concordant low mood,
respectively high mood, SMS-7 scores (Tables 1 and S1).

Our independent test cohort for predicting low-mood
state (SMS-7 ≤ 40) and high-mood state (SMS-7 ≥ 60) con-
sisted of 153 male and 37 female subjects with psychiatric
disorders, demographically matched with the discovery
cohort, with one or multiple testing visits in our study, with
either low mood, intermediate mood, or high mood states
(Fig. 1 and Table 1).

Our independent test cohort for predicting clinical
depression state (HAMD ≥ 22) consisted of 181 male and 45
female subjects with psychiatric disorders, demographically
matched for age, with one or multiple testing visits in our

study, with either low, intermediate, or high HAMD scores.
Our independent test cohort for predicting clinical mania state
(YMRS ≥ 20) consisted of 73 males and 24 female subjects
with psychiatric disorders, demographically matched for age,
with one or multiple testing visits in our study, with either
low, intermediate, or high YMRS scores (Fig. 1 and Table 1).

Our test cohorts for predicting future hospitalizations
with depression, and future hospitalizations with mania
(Fig. 1 and Table 1), are a subset of the independent test
cohort for which we had longitudinal follow-up with elec-
tronic medical records. The subjects’ subsequent number of
hospitalizations with depression, and with mania, was
tabulated from electronic medical records.

Medications

The subjects in the discovery cohort were all diagnosed
with various psychiatric disorders (Table 1), and had var-
ious medical co-morbidities. Their medications were listed
in their electronic medical records, and documented by us
at the time of each testing visit. Medications can have a
strong influence on gene expression. However, there was
no consistent pattern of any particular type of medication,
as our subjects were on a wide variety of different medi-
cations, psychiatric and non-psychiatric. Furthermore, the
independent validation and testing cohort’s gene expres-
sion data were Z-scored by gender and by diagnosis before
being combined, to normalize for any such effects. Some
subjects may be non-compliant with their treatment and
may thus have changes in medications or drug of abuse not
reflected in their medical records. That being said, our goal
is to find biomarkers that track mood, regardless if the
reason for it is endogenous biology or it is driven by
medications or drugs. In fact, one would expect some of
these biomarkers to be targets of medications, as we show
in this paper. Moreover, the prioritization step that occurs
after discovery is based on a field-wide convergence with
literature that includes genetic data and animal model data,
that are unrelated to medication effects. Overall, the dis-
covery, validation, and replication by testing in indepen-
dent cohorts of the biomarkers, with our design,
occurs despite the subjects having different genders, diag-
noses, being on various different medications, and other
lifestyle variables.

Blood gene expression experiments

RNA extraction

Whole blood (2.5 ml) was collected into each PaxGene tube
by routine venipuncture. PaxGene tubes contain proprietary
reagents for the stabilization of RNA. RNA was extracted
and processed as previously described [3–5].
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Microarrays

Microarray work was carried out using previously described
methodology [3–6].

Of note, all genomic data were normalized (RMA for
technical variability, then z-scoring for biological varia-
bility), by gender and psychiatric diagnosis, before being
combined and analyzed.

Biomarkers

Step 1: Discovery

We have used the subject’s score from a visual-analog scale
(SMS-7), assessed at the time of blood collection (Fig. 1). We
analyzed gene expression differences between visits with low
mood (defined as a score of 0–40) and visits with high mood
(defined as a score of 60–100), using a powerful within-
subject design, then an across-subjects summation (Fig. 1).

We analyzed the data in two ways: an absent–present (AP)
approach, and a differential expression (DE) approach, as in
previous work by us on suicide biomarkers [3–5]. The AP
approach may capture turning on and off of genes, and the DE
approach may capture gradual changes in expression. Analyses
were performed as previously described [4–6]. In brief, we
imported all Affymetrix microarray data as CEL. files into
Partek Genomic Suites 6.6 software package (Partek Incorpo-
rated, St Louis, MI, USA). Using only the perfect match
values, we ran a robust multi-array analysis (RMA) by gender
and diagnosis, background corrected with quantile normal-
ization and a median polish probeset summarization of all
chips, to obtain the normalized expression levels of all probe-
sets for each chip. Then, to establish a list of differentially
expressed probesets we conducted a within-subject analysis,
using a fold change in expression of at least 1.2 between
consecutive high- and low-mood visits within each subject.
Probesets that have a 1.2-fold change are then assigned either a
1 (increased in high mood) or a −1 (decreased in high mood)
in each comparison. Fold changes between 1.1 and 1.2 are
given 0.5, and fold changes less than 1.1 are given 0. These
values were then summed for each probeset across all the
comparisons and subjects, yielding a range of raw scores. The
probesets above the 33.3% of raw scores were carried forward
in analyses (Fig. 1), and received an internal score of 2 points;
those above 50% 4 points, and those above 80% 6 points [4–
6]. We have developed in our labs R scripts to automate and
conduct all these large dataset analyses in bulk, checked against
human manual scoring [6].

Gene Symbol for the probesets were identified using
NetAffyx (Affymetrix) for Affymetrix HG-U133 Plus 2.0
GeneChips, followed by GeneCards to confirm the primary
gene symbol. In addition, for those probesets that were not
assigned a gene symbol by NetAffyx, we used GeneAnnot

(https://genecards.weizmann.ac.il/geneannot/index.shtml),
or if need be UCSC (https://genome.ucsc.edu), to obtain
gene symbol for these uncharacterized probesets, followed
by GeneCard. Genes were then scored using our manually
curated convergent functional genomics (CFG) databases as
described below (Fig. 1D).

Step 2: Prioritization using CFG

Databases We have established in our laboratory (Labora-
tory of Neurophenomics, www.neurophenomics.info) manu-
ally curated databases of the human gene expression/protein
expression studies (postmortem brain, peripheral tissue/fluids:
CSF, blood and cell cultures), human genetic studies (asso-
ciation, copy number variations and linkage), and animal
model gene expression and genetic studies, published to date
on psychiatric disorders. Only findings deemed significant in
the primary publication, by the study authors, using their
particular experimental design and thresholds, are included in
our databases. Our databases include only primary literature
data and do not include review papers or other secondary data
integration analyses to avoid redundancy and circularity. We
also favored unbiased discovery studies over candidate genes
hypothesis-driven studies. These large and constantly updated
databases have been used in our CFG cross validation and
prioritization platform (Fig. 1D). For this study, data from
1600 papers on mood disorders were present in the databases
at the time of the CFG for mood disorders analyses (June
2018) (human genetic studies-759, human brain studies-246,
human peripheral tissue/fluids- 359, non-human genetic stu-
dies-47, non-human brain/studies-167, non-human peripheral
tissue/fluids- 22). We have developed in our lab a compu-
terized CFG Wizard to automate and score in bulk large lists
of genes by integrating evidence from these large databases,
checked against manual scoring [6]. Analyses were performed
as previously described [4, 5].

Step 3: Validation analyses

We examined which of the top candidate genes (score of 6
or above after the first two steps) were stepwise changed in
expression from the clinically depressed validation group to
the low-mood discovery group to the high-mood discovery
group to the clinically manic validation group. A total score
of 6 or above after the first two steps permits the inclusion
of potentially novel genes with maximal internal score of 6
from discovery but no external evidence CFG score from
prioritization. Subjects with low mood as well as subjects
with high mood from the discovery cohort who did not have
clinically severe depression or mania were used, along with
the independent validation cohort (n= 47).

The AP-derived and DE-derived lists of genes were
combined, and the gene expression data corresponding to
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them was used for the validation analysis. The four groups
(clinical depression, low mood, high mood, clinical mania)
were assembled out of Affymetrix.cel data that were RMA
normalized by gender and diagnosis. We transferred the log
transformed expression data to an Excel sheet, and non-log
transformed the data by taking 2 to the power of the
transformed expression value. We then Z-scored the values
by gender and diagnosis. We then imported the excel sheets
with the Z-scored by gender and diagnosis expression data
into Partek, and statistical analyses were performed using a
one-way ANOVA for the stepwise changed probesets, and
also did a stringent Bonferroni correction for all the pro-
besets tested in ANOVA (Fig. 1E).

Top candidate biomarkers (after the first 3 steps)

Adding the scores from the first three steps into an overall
convergent functional evidence (CFE) score (Fig. 1), we
ended up with a list of 26 top candidate biomarkers (26
probesets in n= 23 genes), that had evidence, i.e., a CFE
score, as good as or better than SLC6A4 (the serotonin
transporter) (see also Supplementary Information- Pathways,
Predictions and Reproducibility). SLC6A4 is arguably the
most well studied molecular underpinning of mood disorders
in biological psychiatry, and the target of the majority of
antidepressant medications. We discovered it empirically as a
blood biomarker as part of our work, and used it as a de facto
positive control and cutoff. These 26 top candidate bio-
markers were carried forward into additional analyses for
biological understanding and for clinical utility.

Biological understanding

Clock gene database

We compiled a database of genes associated with circadian
function, by using a combination of review papers [13, 14]
and searches of existing databases CircaDB (http://circadb.
hogeneschlab.org), GeneCards (http://www.genecards.org),
and GenAtlas (http://genatlas.medecine.univ-paris5.fr).
Using the data we compiled from these sources we identi-
fied a total of 1468 genes that show circadian functioning.
We further classified genes into “core” clock genes, i.e.,
those genes that are the main engine driving circadian
function (n= 18), “immediate” clock genes, i.e., the genes
that directly input or output to the core clock (n= 331), and
“distant” clock genes, i.e., genes that directly input or out-
put to the immediate clock genes (n= 1119).

Pathway analyses

IPA (Ingenuity Pathway Analysis, version 24390178, Qia-
gen), David Functional Annotation Bioinformatics

Microarray Analysis (National Institute of Allergy and
Infectious Diseases) version 6.7 (August 2016), and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (through
DAVID) were used to analyze the biological roles, includ-
ing top canonical pathways and diseases (Table 2). We
performed the pathway analyses for the 26 biomarkers (23
unique genes) that were the top candidate biomarkers after
the discovery, prioritization, and validation.

Networks

For network analyses we performed STRING Interaction
network (https://string-db.org) by inputting the genes into
the search window, and performed Multiple Proteins Homo
sapiens analysis (Fig. S3).

CFG beyond mood: evidence for involvement in other
psychiatric and related disorders

We also used a CFG approach to examine evidence from
other psychiatric and related disorders, as exemplified for
the list of top biomarkers after Step 4 testing (Table S3).
This was not used to prioritize genes, but rather to under-
stand the molecular basis of clinical co-morbidities.

Testing for clinical utility in independent cohorts

We tested in independent cohorts of psychiatric patients the
ability of each of the top candidate biomarkers (n= 26) to
assess state severity (mood (measured by SMS-7), depres-
sion (measured by HAMD), mania (measured by YMRS)),
and predict trait risk (future hospitalizations with depres-
sion, future hospitalizations with mania). We conducted our
analyses across all patients, as well as personalized by
gender and diagnosis. We then predict with the biomarkers
from the list in independent cohorts state (low-mood SMS-
7 ≤ 40, depression HAMD ≥ 22), and trait (Future Hospita-
lizations with Depression) in the first year of follow-up, and
in all future years of follow-up. We also conducted similar
analyses for predicting high mood, mania, and future hos-
pitalizations for mania.

The test cohort for predicting low mood/depression(state),
and the test cohort for predicting future Hospitalizations with
Depression (trait), was assembled out of data that were RMA
normalized by gender and diagnosis. The cohort was com-
pletely independent from the discovery and validation
cohorts, there was no subject overlap with them. Individual
markers used for predictions were Z-scored by gender and
diagnosis, to be able to combine different biomarkers into
panels and to avoid potential artefacts due to different ranges
of expression in different gender and diagnoses. For panels,
biomarkers were combined by simple summation of the
increased risk biomarkers minus the decreased risk
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biomarkers. Predictions were performed using R-studio. For
cross-sectional analyses, we used biomarker expression
levels, z-scored by gender and diagnosis. For longitudinal
analyses, we combined four measures: biomarker expression
levels, slope (defined as ratio of levels at current testing visit
vs. previous visit, divided by time between visits), maximum
levels (at any of the current or past visits), and maximum
slope (between any adjacent current or past visits). For
decreased biomarkers, we used the minimum rather than the
maximum for level calculations. All four measures were
Z-scored, then combined in an additive fashion into a single
measure. The longitudinal analysis was carried out in a sub-
cohort of the testing cohort consisting of subjects that had at
least two visits (timepoints).

Predicting state- low mood, clinical depression

Receiver-operating characteristic (ROC) analyses between
marker levels and mood state were performed by assigning
subjects visits with a mood SMS-7 score of ≤40 into the low
mood category, and subjects with HAMD scores ≥22 in the
clinically depressed category. We used the pROC package
of R (Xavier Robin et al. BMC Bioinformatics 2011).
(Table 3 and Fig. 2). In addition, a one-tailed t-test was
performed between low mood group vs. the rest, and
Pearson R (one-tail) was calculated between mood scores
and biomarker levels.

Similar analyses were conducted for high mood
state (SMS-7 score of ≥60) and clinical mania state
(YMRS ≥ 20).

Predicting trait- future psychiatric hospitalization with
depression as a symptom/reason for admission

We conducted analyses for predicting future psychiatric
hospitalizations with depression as a symptom/reason for
admission in the first year following each testing visit, in
subjects that had at least 1 year of follow-up in the VA
system, in which we have access to complete electronic
medical records. ROC analyses between biomarkers mea-
sures (cross-sectional, longitudinal) at a specific testing visit
and future hospitalizations were performed as described
above, based on assigning if subjects had been admitted to
the hospital with depression or not. In addition, a one tailed
t-test with unequal variance was performed between groups
of subject visits with and without future hospitalization with
depression. Pearson R (one-tail) correlation was performed
between hospitalization frequency (number of hospitaliza-
tions with depression divided by duration of follow-up) and
marker levels. A Cox regression was performed using the
time in days from the testing visit date to first hospitaliza-
tion date in the case of patients who had been hospitalized,
or 365 days for those who did not. The odds ratio (OR) was

calculated such that a value greater than 1 always indicates
increased risk for hospitalization, regardless if the bio-
marker is increased or decreased in expression.

We also conducted Cox regression and Pearson R ana-
lyses for all future hospitalizations with depression,
including those occurring beyond 1 year of follow-up, in the
years following testing (on average 5.12 years per subject,
range 0.07–11.27 years), as these calculations, unlike the
ROC and t-test, account for the actual length of follow-up,
which varied from subject to subject. The ROC and t-test
might in fact, if used, under-represent the power of the
markers to predict, as the more severe psychiatric patients
are more likely to move geographically and/or be lost to
follow-up. The Cox regression was performed using the
time in days from visit date to first hospitalization date in
the case of patients who had hospitalizations with depres-
sion, or from visit date to last note date in the electronic
medical records for those who did not.

Similar analyses were conducted for future hospitaliza-
tions with mania as a symptom/reason for hospitalization.

Therapeutics

Pharmacogenomics

We analyzed which of the top biomarkers for depression
and for mania after Steps 1–4 are known to be changed in
expression by existing drugs in a direction opposite to the
one in disease, using our CFG databases, and using Inge-
nuity Drugs analyses (Table 3 and Table S4).

New drug discovery/repurposing

We also analyzed which drugs and natural compounds are
an opposite match for the gene expression signatures of our
top biomarkers, using the Connectivity Map (https://portals.
broadinstitute.org, Broad Institute, MIT) (Fig. 3 and
Table 4). Of note, not all the probesets from the HG-U133
Plus 2.0 array we used were present in the HGU-133A array
used for the Connectivity Map. We stayed with exact pro-
beset level matches, not gene level imputation. We also
used the NIH LINCS database to conduct similar analyses,
at a gene level.

Report generation

We present an example of how a report to doctors
might look, using the above insights. We used a panel of
top biomarkers after Steps 1–4 (Fig. 3 and Table 3):
BioM12+ 1: n= 12 genes to generate a score for depres-
sion severity, as well as the mania biomarker RLP3 to
inform risk for bipolar switching. Out of a dataset of
794 subject visits, we chose as a case study a visit from a
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female patient with depression who had died by suicide, a
case previously discussed in a suicide biomarker paper of
ours (Levey et al. [5]) (Fig. 4).

First, we removed that patient from the dataset, and
divided the remaining dataset into three populations: those
who had a high HAMD score ≥22 (concordant with a low
SMS-7 mood score ≤ 40), those who had a low HAMD
score ≤7, and those who had an intermediate HAMD score.
For the first two groups, we calculated the average Z-scored
expression values for each biomarker in the panel. We then
compared the levels of each biomarker, in each subject in
the cohort, including the subject of interest, to these refer-
ence levels. If a biomarker was higher than the average of
the high HAMD subjects it got a 1, if it was below the
average of the low HAMD subjects it got a 0, and if it was
in between it got a 0.5. Next, we averaged the biomarkers in
the panel and multiplied by 100, to generate a score
between 0 and 100 for the BioM12 for each of the
794 subjects, including the case study subject. This digita-
lization of the scores was done to avoid overfitting to our
particular cohort, and provide an easily understandable and
interpretable readout for clinicians. The score of the
BioM12 is compared to the average score of BioM12 for the
high HAMD subjects and the low HAMD subjects, gen-
erating 3 risk categories: high (red), intermediate (yellow),
and low (green) for current depression severity. This rank
percentile of the score of the patient compared to the

distribution of scores of subjects in the database is also
provided in the report (Fig. 4).

Second, future risk is assessed by looking how many of
three biomarkers in the panel, that are good predictors of
future hospitalizations for depression (NRG1, PRPS1,
SMAD7), were a 1, generating 0 to 3 asterisks.

Third, we examined how many of the bipolar biomarkers
(n= 6) in BioM12 were a score of 1. If more than 50% of
them (more than 3 out of 6) were a 1, than the patient gets
an asterisk for bipolar risk. If the mania biomarker RLP3 is
also 1, then the patient gets another asterisk for risk of
bipolarity, i.e., risk of switch if treated for depression. In
those with asterisks for risk of bipolarity, it is advisable to
choose mood stabilizers or antipsychotics from the medi-
cation choices provided by the report.

Fourth, for each biomarker in the panel, we also have a
list of existing psychiatric medications that modulate the
expression of the biomarker in the direction of high mood.
Each medication got a score of 1 or 0 whether it modulated
a particular biomarker in the panel or not, and that score is
multiplied with the risk score of the biomarker, i.e., 1 or 0.5
or 0. A medication can modulate more than one biomarker.
We then calculated an average score for each medication
based on its effects on all the biomarkers in the panel, and
multiplied that by 100, resulting in a score of 0 to 100 for
each medication. Thus, psychiatric medications are matched
to the patient and ranked in order of impact on the panel.

Fig. 3 Therapeutics: matching with medications. A Pharmacoge-
nomics. See also Tables 3 and S4. B New repurposed drugs using the
panels of markers. See also Table 4. There is overlap between
depression, bipolar and mania biomarkers. RPL3 could be targeted to
treat mania with less risk of inducing depression. Six biomarkers
(CD47, FANCF, GLO1, HNRNPDL, OLFM1, SMAD7) could be
targeted to treat depression with less risk of inducing mania. Other six

biomarkers (DOCK10, GLS, NRG1, PRPS1, TMEM161B, SLC6A4)
could be targeted to treat depression fast/powerfully, but may induce
mania, so need to be coupled with a mood stabilizer or antipsychotic.
An example of the latter is SLC6A4. SSRIs should thus be used
cautiously in monotherapy to treat depression, and clinicians should
have a low threshold for adding mood stabilizers.
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Table 4 Therapeutics: drug repurposing for depression.

A. Connectivity Map (CMAP) analyses

Rank CMAP name Score Role

A1. Drugs identified using gene expression panels of biomarkers with highest evidence (CFE) for involvement in depression (BioM12
depression—12 genes—NRG1, PRPS1, GLS, DOCK10, TMEM161B, GLO1, HNRNPDL, FANCF, CD47, SMAD7, OLFM1, SLC6A4).
See Table 3A and Fig. 3. Direction of expression in high mood (CMAP).

1 Isoflupredone 1 Synthetic glucocorticoid that may be considered as an alternative to traditional corticosteroids. Isoflupredone is the
only corticosteroid approved by the U.S. Food and Drug Administration for use exclusively in large animals,
including lactating cattle.

2 Trichostatin A 0.963 HDAC inhibitor

3 Dubinidine 0.943 Anticonvulsant which reduces motor activity, enhances the effects of alcohol, ether and barbiturates. Quinoline
alkaloid, from plants of the Rutaceae Family.

4 Ciprofibrate 0.939 PPAR-alpha activator, lipid lowering agent

5 Pioglitazone 0.931 PPAR-γ activator, anti-diabetic (*also in our work on Alzheimer [10])

6 tropine 0.93 Alkaloid

7 Adiphenine* 0.907 Anticholinergic, antispasmodic (*also in our work on suicidality [6])

8 Saquinavir 0.903 Anti-retroviral medication

9 Amitriptyline 0.902 Tricyclic antidepressant.

10 Chlorogenic
acid*

0.897 Antioxidant, polyphenol found in coffee (*also in our work on suicidality [6])

A2. Drugs identified using gene expression panels of biomarkers with highest evidence (CFE) for involvement in depression specific
without overlap with bipolar (BioM6 Depression-specific—6 genes—GLO1, HNRNPDL, FANCF, CD47, SMAD7, OLFM1). Direction of
expression in high mood (CMAP). See Fig. 3.

1 Pindolol 1 β-blocker, and is also a potent serotonin 5HT1A presynaptic receptor antagonist

2 Lansoprazole 0.977 Proton pump inhibitor (PPI), that works by decreasing the amount of acid produced by the stomach.

3 Xamoterol 0.975 Cardiac stimulant, that works by binding to the β1 adrenergic receptor. It is a 3rd generation adrenergic β
receptor partial agonist. It provides cardiac stimulation at rest but it acts as a blocker during exercise.

4 Methanthelinium
bromide

0.953 Muscarinic receptor antagonist (anticholinergic, parasympatholytic agent). Spasmolytic agent. Gastric acid
secretion inhibitor.

5 Asiaticoside* 0.927 Triterpenoid component derived from Centella asiatica (L.) and widely used in antioxidant, anti-inflammatory,
immunomodulatory, and wound healing applications. (*also in our work on suicidality [6])

6 Estradiol 0.924 Female sex hormone

7 Methacholine 0.923 Muscarinic agonist

8 Isoflupredone 0.916 Steroid

9 Carteolol 0.913 Beta blocker

10 Chlorcyclizine 0.911 First-generation antihistamine. It is used primarily to treat allergy symptoms such as rhinitis, urticaria, and
pruritus, and may also be used as an antiemetic.

A3. Drugs identified using gene expression panels of biomarkers overlapping between depression and bipolar (BioM6 bipolar depression
—6 genes—NRG1, DOCK10, GLS, PRPS1, TMEM161B, and SLC6A4). Direction of expression in high mood. (CMAP). See Table 3B
and Fig. 3.

1 Valproic acid 1 HDAC inhibitor, mood stabilizer

2 Atracurium besilate 0.991 Nicotinic antagonist muscle relaxant

3 Chicago Sky
Blue 6B

0.98 Histological stain that also is a vesicular glutamate transporters inhibitor, attenuating methamphetamine-induced
hyperactivity and behavioral sensitization in animal models

4 Enoxacin 0.972 Fluoroquinolone antibiotic that also elevates microRNA levels and prevents learned helplessness in
animal models

5 Levobunolol 0.969 Beta-blocker

6 15-delta
prostaglandin J2

0.95 Anti-inflammatory lipid mediator and PPAR-γ activator. It is made from prostaglandin D2. Decreased
Prostaglandin D2 Levels in Major Depressive Disorder Are Associated with Depression-Like Behaviors in
human and animal model studies.

7 Ciprofibrate 0.949 PPAR-alpha activator, lipid lowering agent
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Fifth, we used the biomarkers that were positive as high
risk in the panel, to interrogate the CMAP and do indivi-
dualized drug repurposing, identifying new non-psychiatric
compounds that could be used in that particular patient to
treat depression (Fig. 4).

Results

In Step 1 Discovery, we identified candidate blood gene
expression biomarkers that: (1) change in expression in
blood between self-reported low-mood and high-mood
states, (2) track the mood state across visits in a subject,
and (3) track the mood state in multiple subjects. We used a
visual analog measure for mood state (SMS-7). At a phe-
notypic level, the SMS-7 quantitates mood state at a parti-
cular moment in time, and normalizes mood measurements
in each subject, comparing them to the lowest and highest
mood that subject ever experienced. We then used a pow-
erful within-subject and then across-subject design in a
longitudinally followed cohort of subjects (n= 44 subjects,
with 134 visits) who displayed at least a 50% change in the
mood measure (from below 40/100 to above 60/100)
between at least two consecutive testing visits, to identify
differentially expressed genes that track mood state. Using
our 33% of maximum raw score threshold (internal score of
2 pt) [4, 5], we had 11,620 unique probesets (corresponding
to 9649 unique genes) from Affymetrix Absent/Present

(AP) analyses and DE analyses (Fig. 1D). These were
carried forward to the prioritization step. This represents
approximately a fivefold enrichment of the 54,625 probesets
on the Affymetrix array.

We also examined in the discovery cohort whether
subtypes of low mood can be identified based on mental
state at the time of low mood visits, using two-way hier-
archical clustering with anxiety and psychosis measures.
The mood state self-report may be more reliable in this
cohort, as the subjects demonstrated the aptitude and will-
ingness to report different, and diametric, mood states. We
uncovered four potential subtypes of low mood/depression:
high anxiety and low psychosis (anxious), high anxiety and
high psychosis (combined), low anxiety and high psychosis
(psychotic), low anxiety and low psychosis (pure low
mood) (Fig. S3). These subtypes need to be tested in future
studies in independent cohorts for practical utility, diag-
nostic and therapeutic.

In Step 2 Prioritization, we used a CFG approach to
prioritize the candidate biomarkers identified in the dis-
covery step (33% cutoff, internal score of ≥2 pt.) by using
published literature evidence (genetic, gene expression and
proteomic), from human and animal model studies, for
involvement in mood disorders (Fig. 1E and Table S2).
There were 6370 probesets (corresponding to 4960 unique
genes) that had a total score (combined discovery score and
prioritization CFG score) of 6 and above. These were car-
ried forward to the validation step. This represents

Table 4 (continued)

8 Pirinixic acid 0.949 PPAR-alpha activator, anti-lipid agent

9 Isoflupredone 0.947 Synthetic glucocorticoid

10 Trichostatin A 0.946 HDAC inhibitor

B. NIH LINCS L1000 characteristic direction signature search engine analyses

Rank Score Drug Description

B1. Drugs identified using gene expression panels of biomarkers with highest evidence (CFE) for involvement in depression (BioM12
Depression- 12 genes). See Table 3A and Fig. 3. Direction of expression in high mood (9 increased and 3 decreased).

1 0.3 NNC 55–0396 dihydrochloride T-type calcium channel blocker

2 0.3 Nadolol Beta blocker

3 0.3 MLN4924 Inhibitor of Nedd8-Activating Enzyme

4 0.2 U0126 MEK ½ inhibitor

5 0.2 Nortryptiline Tricyclic antidepressant

6 0.2 Amcinonide Synthetic glucocorticoid

7 0.2 Iopanic acid Iodine-containing radiocontrast medium, thyroid inhibitor

8 0.2 Paroxetine SSRI antidepressant

9 0.2 Rosuvastatin Statin

10 0.2 trichostatin A HDAC inhibitor

Drugs that have opposite gene expression effects to the gene expression signature of our nominally significant predictive biomarkers for
depression(A1–A2) and for bipolar depression(A3), using the Connectivity Map [36] (CMAP), and for depression (B1) using the NIH LINCS
database. Bold—new drugs of immediate interest. Italic—natural compound. Underlined—known drugs that serve as a de facto positive control.
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approximately a tenfold enrichment of the probesets on the
Affymetrix array.

In Step 3 Validation, we validated for change in
clinically severe mood disorders (depression, mania) these
prioritized biomarkers, in a demographically matched
cohort of (n= 30 clinically severe depression, n= 17
clinically severe mania), by assessing which markers were
stepwise changed in expression: from clinically severe
depression in validation cohort, to low mood in discovery
cohort, to high mood in discovery cohort, and to clinically
severe mania in the validation cohort (Fig. 1). Four
thousand six hundred thirty-three probesets were not
stepwise changed, and 1737 were stepwise changed. Of
these, 291 probesets (corresponding to 283 unique genes)
were nominally significant. This represents approximately
a 188-fold enrichment of the probesets on the
Affymetrix array.

Adding the scores from the first three steps into an
overall CFE score (Fig. 1), we ended up with a list of 26 top
candidate biomarkers (n= 23 genes, 26 probesets), that had
a CFE score as good as or better than SLC6A4, which
serves as a de facto positive control and which we decided
to use as an empirical cutoff. This represents approximately
an over 2000-fold enrichment of the probesets on the
Affymetrix array.

The list of 23 genes (26 probesets) (Fig. 1) is composed
of genes increased in expression in high mood
(TMEM161B, GLO1, PRPS1, SMAD7, ANK3, OGT,
CD47, GLS, TMEM106B, RPL3, FANCF, HNRNPDL,
DOCK10, CALM1), and genes decreased in expression in
high mood (NRG1, OLFM1, SPECC1, SORT1, TPH1,
GSK3B, MARCKS, NR3C1, and SLC6A4). These 26 top
candidate biomarkers were carried forward into analyses for
understanding biological underpinnings. Last but not least,

Fig. 4 Example of report for physicians. Using the panel of the top
biomarkers BioM12+ 1: Depression (n= 12 genes), as well as RPL3
for mania risk. This subject (Phchp328) was previously described by
us in a suicidality biomarker study (Levey et al. [5]), as high risk for
suicide, and died by suicide a year after completing our study. No
information was provided to her clinicians by us at that time due to
anonymity and privacy rules in research studies. The raw expression
values of the biomarkers were Z-scored by gender and diagnosis. The
Z-scored expression value of each increased biomarker was compared
to the average value for the biomarker in the severely depressed group
(HAMD ≥ 22), and the average value of the non-depressed group
(HAMD ≤ 7), resulting in scores of 1 or 0, respectively, and 0.5 if it
was in between. The reverse was done for decreased biomarkers. The
“digitized” biomarkers were then added into a polygenic risk score.
The subject had a BioM12 polygenic depression score of 88.46, being
at the 90% of the 794 subjects in our database. Three out of the three
biomarkers for future risk for depression hospitalizations (NRG1,

PRPS1, SMAD7) had a score of 1 in this patient (***). More than 50%
of the 6 bipolar biomarkers that are part of the BioM12 (Table 3A and
B) (*), as well as the mania marker RPL3 (Table 3C) (*), had a score
of 1 in this patient, resulting in increased risk for bipolar switching
(**). This subject’s clinical diagnosis was major depressive disorder
(MDD), but it is likely she had bipolar disorder. The “digitized”
biomarkers were also used for matching with existing psychiatric
medications. Biomarkers were matched based on our CFG databases
with existing psychiatric medications that had effects on gene
expression opposite to depression, in the direction of high mood. Each
medication matched to a biomarker got a score of 1 that was then
multiplied with the biomarker score of 1, 0.5 or 0. The scores for the
medications were added, and medications prioritized by this score. In
addition, the signature of the biomarkers in the panel that had a score
of 1, and their direction of change, was used to interrogate the CMAP
and LINCS databases for new repurposed medications that would treat
depression in this patient.
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they were tested for predictive ability and clinical utility in
additional independent cohorts.

Biological understanding

Biological pathways

We conducted biological pathway analyses using the
top candidate biomarkers for mood (n= 23 genes, 26
probesets), which suggest that circadian, neurotrophic, and
cell differentiation functions are involved, along with ser-
otonergic and glutamatergic signaling, supporting a view of
mood as reflecting activity and growth (Table 2A). Reas-
suringly, depression, along with weight gain, were the top
diseases identified by the pathway analyses using DAVID,
and Ingenuity identified neurological and psychological
disorders as the top diseases.

Circadian

A number of top candidate biomarkers identified by us have
biological roles that are related to the circadian clock (8 out
of 23 genes) (Supplementary Information- Pathways, Pre-
dictions and Reproducibility). Circadian clock abnormal-
ities are related to mood disorders [14, 15].

Networks and interactions

We conducted STRING analyses of the top candidate bio-
markers that revealed groups of interacting proteins. In
particular, NR3C1 ((Nuclear Receptor Subfamily 3, Group
C, Member 1 (Glucocorticoid Receptor)) is at the overlap of
a network containing SLC6A4 and TPH1, and one centered
on GSK3B that also contains OGT and CALM1 (Fig. S3).
A third network includes CALM1, GLO1, and MARCKS.
These networks may have biological significance and could
be targeted therapeutically. The first network is involved in
reactivity (serotonin and stress response), the second one in
activity (energy metabolism and growth), and the third one
in connectivity (calcium intracellular signaling).

Testing for clinical utility

In Step 4 Testing, we examined in completely independent
cohorts from the ones used for discovery or validation
whether the 26 top candidate biomarkers can assess low-
mood state (n= 190 subjects), depression state (n=
226 subjects), as well as predict of future psychiatric hos-
pitalizations due to depression (n= 170 subjects) (Fig. 2
and Table 3), using electronic medical records follow-up
data of our study subjects (up to 11.27 years from initial
visit at the time of the analyses) (Fig. 1, Table 1, and
Table S1). The gene expression data in the test cohorts were

normalized (Z-scored) across genders and various psychia-
tric diagnoses, before those different demographic groups
were combined. We used biomarker levels information
cross-sectionally, as well as expanded longitudinal infor-
mation about biomarker levels at multiple visits, as pre-
dictors. We tested the biomarkers in all subjects in the
independent test cohort, as well as in a more personalized
fashion by gender and psychiatric diagnosis.

For low mood state assessment across all subjects in the
independent test cohort, the best biomarker was NRG1,
increased in expression in low mood, with an AUC of 62 %
(p= 6.8E−03), and 64% (p= 3.5E−02) for assessing
clinical depression state. NRG1 also had a Cox regression
OR of 1.17 (p= 2.5E−02) for predicting all future hospi-
talizations for depression, and an AUC of 87% (p= 1.1E
−03) for predicting first year hospitalizations for depression
in females. Moreover, in the opposite direction, for asses-
sing high-mood state across all subjects, NRG1 has a
modest AUC of 58% (p= 1.4E−02), but is a robust pre-
dictor of all future hospitalizations for mania in patients
with psychotic disorders (OR of 2.7 (p= 3.3E−02). Con-
sistent with our findings, NRG1 (neuregulin 1) has prior
evidence as a biomarker for mood disorders, increased in
expression in blood in depression, and decreased in
expression after antidepressant treatment [16]. Interestingly,
it is increased in expression in blood in our previous bio-
marker studies on suicidality [6], stress [9], pain [8], and
psychosis [17], as well as increased in expression in blood
in aging [18], all co-morbidities associated with depression.
NRG1 is a membrane glycoprotein that mediates cell–cell
signaling and plays a critical role in the activity, growth and
development of multiple organ systems. It is a direct ligand
for ERBB3 and ERBB4 tyrosine kinase receptors, resulting
in ligand-stimulated tyrosine phosphorylation and activation
of the ERBB receptors. Activity and trophicity of tissues
may be key functions of mood [19].

For assessment of clinical depression state in the inde-
pendent test cohort, DOCK10, decreased in expression in
low mood, had an AUC of 73% (p= 1.17E−03) across all
subjects, and 75% (p= 1.05E−03) in males, surviving
Bonferroni correction for all 26 biomarkers tested. It also
had an AUC of 95% (p= 1.52E−02) for males with PTSD.
DOCK10 had a Cox regression OR of 1.9 (p= 3.93E−02)
for predicting all future hospitalizations for depression in
females. Moreover, in the opposite direction, for assessing
high mood state, it has an AUC of 70% in females (p=
2.63E−02), and 100% (p= 9.18E−04) in females with
bipolar disorder (Table 3). DOCK10 (dedicator of cyto-
kinesis 10) has some prior human evidence in human blood
from bipolars [20], and is decreased in expression in brain
in an animal model of depression [21]. DOCK10 is also
decreased in expression in human brains and blood in aging
[18], as well as decreased in brain in an animal model of
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stress-induced depression, as described by Nestler and
colleagues [22]. Interestingly, it is increased in expression
in brain in animal models upon physical and cognitive sti-
mulation [23]. There is human genetic evidence implicating
this gene in longevity [24]. The link between depression,
stress, aging and longevity is an area of active interest for
our group [25, 26]. DOCK10 is a guanine nucleotide-
exchange factor that activates CDC42 and RAC1 by
exchanging bound GDP for free GTP. It is essential for
dendritic spine morphogenesis in Purkinje cells and in
hippocampal neurons, via a CDC42-mediated pathway.

SLC6A4 is an example of a previously well-known gene
reproduced in this study. For clinical depression state
assessment in the independent test cohort across all sub-
jects, SLC6A4, increased in expression in low mood, had an
AUC of 61% (p= 1.1E−02) if measured cross-sectionally,
and AUC of 66% (p= 1.78E−02) if measured long-
itudinally. It has even better accuracy in females: an AUC
of 78% (p= 1.8E−02) if measured cross-sectionally, and
an AUC of 98% (p= 1.1E−02) if measured longitudinally.
Moreover, in the opposite direction, for predicting future
hospitalizations for mania in the first year, across all sub-
jects, SLC6A4 had an AUC of 74% (p= 3.3E−03), and an
even better accuracy in male bipolars, with an AUC of 77%
(p= 1.3E−02). The product of this gene is the serotonin
transporter, which is the target of serotonin reuptake inhi-
bitors used to treat depression, as well as anxiety and stress
disorders. Of note, it is known that individuals with bipolar
disorder treated with SSRIs, especially in monotherapy, can
switch into mania.

As exemplified above, we also conducted analyses
looking at the ability of the 26 top candidate biomarkers to
assess high mood/mania states, and predict future hospita-
lizations for mania (Table 3B,C, and see Supplementary
Information—Pathways, Predictions and Reproducibility).

We also tested an algorithm combining as predictors
BioM26, along with mood (SMS-7, Fig. S1) and with a
measure of clinical severity of bipolar disorder (CFI-BP,
Fig. S2), with modest synergistic effects (Table S1). Of
note, CFI-BP was a good predictor of all future hospitali-
zations for mania in all (Cox regression OR of 2.9 (p= 2.5E
−04)), and an even better predictor in males with bipolar
disorder (OR of 3.2 (p= 8.3E−05)).

Convergent functional evidence (CFE)

For the top candidate biomarkers (n= 26), we tabulated into
a CFE score all the evidence from discovery (up to 6
points), CFG prioritization (up to 12 points), validation (up
to 6 points), and testing (state low mood, state clinical
depression, trait first year hospitalization with depression,
trait all future hospitalizations with depression, as well as
state high mood, state clinical mania, trait first year

hospitalization with mania, trait all future hospitalizations
with mania—up to three points each if it significantly pre-
dicts in all subjects, two points if in gender, one points if in
gender/diagnosis). The total score can be up to 48 points: 36
from our empirical data, and 12 from literature data used for
CFG. We weigh our new empirical data more than the lit-
erature data, as it is functionally related to mood in three
independent cohorts (discovery, validation, and testing).
The goal is to highlight, based on the totality of our data and
of the evidence in the field to date, biomarkers that have all
around evidence: track mood, have convergent evidence for
involvement in mood disorders, and predict mood state and
future clinical events (Table 3). Such biomarkers merit
priority evaluation in future clinical trials.

The 6 top blood biomarkers with the strongest overall
CFE for tracking and predicting both depression and mania,
hence bipolar mood disorders, after the first four steps were
NRG1, DOCK10, GLS, PRPS1, TMEM161B, and
SLC6A4 (Table 3B). For example, NRG1 (neuregulin 1)
decreased in expression in high mood, survived discovery,
prioritization and validation. It seems to be a better predictor
for low mood/depression, especially personalized by gender
and diagnosis, than for high mood/mania (Table 3).

Targeted therapeutics

Pharmacogenomics

A number of individual top biomarkers are known to be
modulated by medications in current clinical use for treating
depression, such as by lithium (NRG1, PRPS1, CD47),
antidepressants (SLC6A4, DOCK10, NRG1, CD47) and the
nutraceutical omega-3 fatty acids (GLO1, SLC6A4, CD47,
GLS, HNRNPDL) (Fig. S4 and Table 3 and S4). In parti-
cular, NRG1 is at the overlap of lithium and anti-
depressants, and CD47, which is involved in cell survival, is
at the overlap of all three treatments (Fig. S4). This is of
potential utility in patient stratification and pharmacoge-
nomics approaches. Omega-3 fatty acids may be a widely
deployable preventive treatment, with minimal side-effects,
including in women who are or may become pregnant.

New drug discovery/repurposing

Bioinformatic analyses using the gene expression signature
of panels of top biomarkers for low mood/depression
(Table 4) identified new potential therapeutics for depres-
sion, such as the beta-blocker and serotonin 5HT1A pre-
synaptic receptor antagonist pindolol, the PPAR-alpha
activator and lipid lowering agent ciprofibrate, the PPAR-γ
activator and anti-diabetic pioglitazone, and the antic-
holinergic and antispasmodic adiphenine. It also identified
the natural compounds asiaticoside and chlorogenic acid.
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The last three had also been identified by our previous
suicidality studies. Asiaticoside is a triterpenoid component
derived from Centella asiatica (Gotu Kola), used in anti-
oxidant, anti-inflammatory, immunomodulatory, and wound
healing applications. Chlorogenic acid is an antioxidant
polyphenol found in coffee.

Discussion

We describe a novel and comprehensive effort to discover
and validate blood biomarkers of relevance to mood dis-
orders, including testing them in independent cohorts to
evaluate predictive ability and clinical utility. These bio-
markers also open a window into understanding the biology
of mood disorders in general, and of depression and bipolar
disorders in particular, as well as indicate new and more
precise therapeutic approaches. We provide support for the
view that, while mood is a continuum from low to high
mood, with some of the best predictive biomarkers for low
mood/depression and high mood/mania being shared (with
changes in opposite direction), some biomarkers are stron-
ger predictors for clinical depression and others for clinical
mania, not surprising given the different co-morbidities
associated with those conditions.

Current clinical practice and the need for
biomarkers

A convergence of methods assessing the persons’ internal
subjective feelings and thoughts, along with more objective
external ratings of actions and behaviors, is used de facto in
clinical practice to assess mood and diagnose clinical mood
disorders, such as depression and bipolar disorders. Such an
approach is insufficient, and lagging behind those used in other
medical specialties. Moreover, ~70% of patients with bipolar I
disorder (BP-I) are initially misdiagnosed, with a mean delay of
5–10 years between illness onset and diagnosis. Most com-
monly patients are misdiagnosed with major depressive dis-
order (MDD) [27, 28]. Blood biomarkers related to mood
would provide a critical objective measurement to inform
clinical assessments and treatment decisions (Fig. 4).

Brain–blood

Blood biomarkers offer real-world clinical practice advan-
tages. As the brain cannot be readily biopsied in live indi-
viduals, and CSF is less easily accessible than blood, we
have endeavored over the years to identify blood bio-
markers for neuropsychiatric disorders. A whole-blood
approach facilitates field deployment of sample collection.
The assessment of gene expression changes focuses our
approach on immune cells. The ability to identify peripheral

gene expression changes that reflect brain activities is likely
due to the fact that the brain and immune system have
developmental commonalities, marked by shared reactivity
and ensuing gene expression patterns. There is also a bi-
directional interaction between the brain and immune sys-
tem. Not all changes in expression in peripheral cells are
reflective of or germane to brain activity. By carefully
tracking a phenotype with our within-subject design in
the discovery step, and then using CFG prioritization, we
are able to extract the peripheral changes that do track and
are relevant to the brain activity studied, in this case mood
state, and its disorders.

Subsequent validation and testing in independent cohorts
narrow the list to the best markers. In the end, we do not
expect to recapitulate in the blood all that happens in the
brain. We just want to have good accessible peripheral
biomarkers—“liquid biopsies”, as they are called in cancer.

Comprehensive approach

In this current work, we carried out extensive blood gene
expression studies in male and female subjects with major
psychiatric disorders, an enriched population in terms of co-
morbidity with mood disorders and variability of mood. The
potential molecular-level co-morbidity between other psy-
chiatric disorders and mood disorders is underlined by the
fact that mood medications (antidepressants, mood stabi-
lizers) are used to treat PTSD and schizoaffective disorders,
and antipsychotics are used to treat mood disorders. Our
goal is first and foremost to discover and validate bio-
markers for mood, that are transdiagnostic, in the spirit of
RDoC. Second, we aim to understand their universality vs.
their specificity by gender and psychiatric diagnosis.

Our studies were stacked in an innovative and compre-
hensive fashion. First, we endeavored to discover blood
gene expression biomarkers for mood using a longitudinal
design, looking at differential expression of genes in the
blood of male and female subjects with major psychiatric
disorders (bipolar disorder, MDD, schizophrenia/schi-
zoaffective, and post-traumatic stress disorder (PTSD)),
high risk populations prone to mood disorders, which
constitute and enriched pool in which to look for bio-
markers. We compared low-mood states to high-mood
states using a powerful within-subject design [3–5, 29], to
generate a list of differentially expressed genes. Second, we
used a comprehensive CFG approach with the whole body
of knowledge in the field to date to prioritize from the list of
differentially expressed genes/biomarkers of relevance to
mood. CFG integrates multiple independent lines of evi-
dence—genetic, gene expression, and protein data, from
brain and periphery, from human and animal model studies,
as a Bayesian strategy for identifying and prioritizing
findings, reducing the false-positives and false-negatives
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inherent in each individual approach. Third, we examined if
the expression levels of the top biomarkers identified by us
as tracking mood state is changed even more dramatically in
blood samples from an independent cohort of subjects with
severe depression and with severe mania, to validate these
biomarkers. Fourth, the markers thus discovered, prior-
itized, and validated were tested in corresponding inde-
pendent cohorts of psychiatric subjects. Fifth, we used the
biomarkers to match to existing psychiatric medications, as
well as to identify and potentially repurpose new drugs for
mood disorders treatment using bioinformatics analyses.
The series of studies was a systematic approach to move the
field forward toward precision medicine.

Power considerations

The current work is more comprehensive and powerful in
design, and larger in size, than our previous studies [1]. We
used a systematic discovery, prioritization, validation, and
testing approach, as we have done more recently for suicide
and other disorders [3–5, 8–10]. For discovery, we used a
hard to accomplish but powerful within-subject design, with
an N of 44 subjects with 134 visits. A within-subject design
factors out genetic variability, as well as some medications,
lifestyle, and demographic effects on gene expression,
permitting identification of relevant signal with Ns as small
as 1 [29]. Another benefit of a within-subject design may be
accuracy/consistency of self-report of psychiatric symptoms
(“phene expression”), similar in rationale to the signal
detection benefits it provides in gene expression.

Based on our work for the last two decades in genetics
and gene expression, along with the results of others in the
field, we estimate that the within-subject longitudinal
design, by factoring out all genetic and some environmental
variability, is up to three orders of magnitude more pow-
erful than an inter-subject case-control cross-sectional
design. Moreover, gene expression, by integrating the
effects of many SNPs and environment, is up to three orders
of magnitude more powerful than a genetic study. Com-
bined, our approach may be up to six orders of magnitude
more powerful than a GWAS study, even prior to the CFG
literature-based prioritization step. As such, it is at least
comparable in power to the largest GWAS to date.

Reproducibility

Besides our top biomarkers, deeper down in our datasets,
we reproduced and expanded our earlier findings of GRK3
(Niculescu et al. Physiological Genomics 2000) [30] and
FGFR1 (Le-Niculescu et al. Molecular Psychiatry 2009) [1]
as blood biomarkers tracking and predicting mood.

In addition, there is reproducibility with findings gener-
ated by independent large scale genetic studies that came

out after our analyses were completed, and were thus not
included in our CFG approach. A number of their top
findings were present in our candidate gene expression
biomarkers for mood list that had survived our initial
whole-genome, unbiased, within-subject discovery step,
before any CFG literature prioritization: 15 out of their 36
top genes for bipolar disorder (Stahl et.al., their Table 1)
[31], 187 out of 553 genes for depression (Coleman et.al,
their Table S4) [32], 128 out of 268 genes for depression
(Howard et al., their Table S9) [33], 487 out of 1291 genes
for depression (Chan et al., their Tables S2, S3, S14, S17)
[34], 491 out of 819 genes involved in antidepressant
response [35], and 79 out of 223 genes for depression
(Levey et al. 2020 Medrxiv.org, their Supplementary
Tables 1 and 3) (see Supplementary Information- Pathways,
Predictions and Reproducibility file). This independent
reproducibility of findings between our studies and the
genetic studies, which are done in independent cohorts from
ours, with independent methodologies, is reassuring, and
provides strong convergent evidence for the validity and
relevance of our approach and of their genetic approaches.
Our work also provides functional evidence for some of
their top genetic hits.

Pathophysiological insights

A number of top candidate biomarkers identified by us have
biological roles that are related to the circadian clock
(Table S3). To be able to ascertain all the genes in our
dataset that were circadian and do estimates for enrichment,
we compiled from the literature a database of all the known
circadian genes, numbering a total of 1468 genes. Using an
estimate of about 21,000 genes in the human genome, that
gives about 7% of genes having some circadian pattern. Out
of our 23 top candidate biomarker genes, eight had circa-
dian evidence (35%), suggesting a fivefold enrichment for
circadian genes. This provides a molecular underpinning for
the epidemiological data between disrupted sleep and mood
disorders, and for the clinical phenomenology of seasonal
components to mood disorders.

The majority of top blood biomarkers we have identified
have prior evidence in postmortem brain datasets from
mood disorders, which indicates their relevance to the
pathophysiology of mood disorders (Table S2). The co-
directionality of blood changes in our work and brain
changes reported in the literature needs to be interpreted
with caution, as it may depend on brain region, and on
disease stage.

The top biomarkers also had prior evidence of involve-
ment in other psychiatric and related disorders (Table S3),
providing a molecular basis for co-morbidity, and the pos-
sible precursor effects of some these disorders on mood, and
conversely, the precursor role of mood in some of them. In
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particular, a majority of them have an overlap with suicide
(92%), as well as stress (92%), aging (83%) and dementia/
Alzheimer (75%), consistent with them being part of the
effects of stress on aging and the “life switch”, as described
in a previous study by us [26]. The primary medications
used to treat stress disorders are serotonin reuptake inhibi-
tors (SSRIs).

Phenomenology (phenomics)

The mood SMS-7 consists of seven items (Supplementary
Fig. S1A). Our clustering analysis revealed the structure
of mood symptoms (Supplementary Fig. S1C). Mood and
Motivation to do things were the most closely related,
followed by Movement activity and Thinking activity.
Self-esteem and Interest in pleasurable activities are more
distant, and related to each other. Appetite is the most
distant, and least related to other items on the scale. Mood
reflects and underlies, in essence, if an individual is
motivated to get on with life/activities, or not, and if
they are happy with themselves. Germane to that,
we show that SMS-7 shows good correlation with items
of a newly developed visual analog scale for Life Satis-
faction (Happiness, Hope, Meaning) (Supplementary
Fig. S1D).

Diagnostics

For the biomarkers identified by us, combining all the
available evidence from this current work into a CFE score,
brings to the fore biomarkers that have clinical utility for
objective assessment and risk prediction for depression,
bipolar disorder, and mania (Table 3A–C). These bio-
markers should be tested individually as well as tested as
polygenic panels of biomarkers in future clinical studies and
practical clinical applications in the field. They may permit
to distinguish, upon an initial clinical presentation of
depression, whether the person is in fact bipolar (Fig. 4).
The integration of phenomic data, such as repeated mea-
sures of SMS-7 (perhaps via a phone app in a daily fashion),
and our CFI-BP score, can further substantiate and elucidate
the diagnoses of depression, bipolar disorder, and distin-
guishing between the two.

In general, our predictive results with biomarkers were
stronger in females than in males, by an order of 10–20% on
AUCs. While some of it may be biological, in terms of
brain–immune interplay being perhaps higher in women, it
is also possible that men are not as accurate as women in
terms of self-reporting mood symptoms (affecting our
results on state predictions), and do not seek help as much
(affecting our results on future hospitalizations predictions).
If so, this under-reporting makes the use of objective bio-
marker tests in men even more necessary.

In regards to how our biomarker discoveries might be
applied in clinical laboratory settings, we suggest that panels
of top biomarkers, such as BioM12+ 1, be used (Fig. 4). In
practice, every new patient tested would be normalized
against the database of similar patients already tested, and
compared to them for ranking and risk prediction purposes,
regardless if a platform like microarrays, RNA sequencing, or
a more targeted one like PCR is used in the end clinically. As
databases get larger, normative population levels can and
should be established, similar to any other laboratory mea-
sures. Moreover, longitudinal monitoring of changes in bio-
markers within an individual, measuring most recent slope of
change, maximum levels attained, and maximum slope of
change attained, may be even more informative than simple
cross-sectional comparisons of levels within an individual
with normative populational levels, as we have shown in our
studies. For future point of care approaches, research and
development should focus on top individual biomarkers,
including at a protein level in accessible fluids such as saliva.
One might look at both the best universal biomarkers (that are
predictive in all), for reliability, and at the best personalized
biomarkers (that are predictive by gender and diagnosis), for
higher accuracy.

Treatment

Biomarkers may also be useful for matching patients to
medications and measuring response to treatment (phar-
macogenomics) (Fig. 4, Table 3 and S4), as well as new
drug discovery and repurposing (Table 4).

Conclusions

Overall, this work is a major step forward towards under-
standing, diagnosing, and treating mood disorders. We hope
that our trait biomarkers for future risk may be useful in
preventive approaches, before the full-blown disorder
manifests itself (or re-occurs). Prevention could be accom-
plished with social, psychological, or biological interven-
tions (i.e., early targeted use of medications or
nutraceuticals). Given the fact that 1 in 4 people will have a
clinical mood disorder episode in their lifetime, that mood
disorders can severely affect quality of life, sometimes
leading to suicides, and that not all patients respond to
current treatments, the need for and importance of efforts
such as ours cannot be overstated.
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